You are viewing documentation for Kubeflow 0.4

This is a static snapshot from the time of the Kubeflow 0.4 release.
For up-to-date information, see the latest version.

Hyperparameter Tuning (Katib)

Using Katib to tune your model’s hyperparameters on Kubernetes

The Katib project is inspired by Google vizier. Katib is a scalable and flexible hyperparameter tuning framework and is tightly integrated with Kubernetes. It does not depend on any specific deep learning framework (such as TensorFlow, MXNet, or PyTorch).

Installing Katib

To run Katib jobs, you must install the required packages.

In your ksonnet application’s root directory, run the following commands:

export KF_ENV=default
ks env set ${KF_ENV} --namespace=kubeflow
ks registry add kubeflow github.com/kubeflow/kubeflow/tree/master/kubeflow

You can read more about Kubeflow’s use of ksonnet in the ksonnet component guide.

TFJob (tf-operator)

To install a TensorFlow job operator, run the following commands:

ks pkg install kubeflow/tf-training
ks pkg install kubeflow/common
ks generate tf-job-operator tf-job-operator
ks apply ${KF_ENV} -c tf-job-operator

PyTorch operator

To install a PyTorch job operator, run the following commands:

ks pkg install kubeflow/pytorch-job
ks generate pytorch-operator pytorch-operator
ks apply ${KF_ENV} -c pytorch-operator

Katib

Then run the following commands to install Katib:

ks pkg install kubeflow/katib
ks generate katib katib
ks apply ${KF_ENV} -c katib

If you want to use Katib outside Google Kubernetes Engine (GKE) and you don’t have a StorageClass for dynamic volume provisioning in your cluster, you must create a persistent volume (PV) to bind your persistent volume claim (PVC).

This is the YAML file for a PV:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: katib-mysql
  labels:
    type: local
    app: katib
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: /data/katib

After deploying the Katib package, run the following command to create the PV:

kubectl create -f https://raw.githubusercontent.com/kubeflow/katib/master/manifests/pv/pv.yaml

Running examples

After deploying everything, you can run some examples.

Example using random algorithm

You can create a StudyJob for Katib by defining a StudyJob config file. See the random algorithm example.

kubectl create -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/random-example.yaml

Running this command launches a StudyJob. The study job runs a series of training jobs to train models using different hyperparameters and save the results.

The configurations for the study (hyper-parameter feasible space, optimization parameter, optimization goal, suggestion algorithm, and so on) are defined in random-example.yaml.

In this demo, hyper-parameters are embedded as args. You can embed hyper-parameters in another way (for example, environment values) by using the template defined in WorkerSpec.GoTemplate.RawTemplate. It is written in go template format.

This demo randomly generates 3 hyper parameters:

  • Learning Rate (–lr) - type: double
  • Number of NN Layer (–num-layers) - type: int
  • optimizer (–optimizer) - type: categorical

Check the study status:

$ kubectl -n kubeflow describe studyjobs random-example
Name:         random-example
Namespace:    kubeflow
Labels:       controller-tools.k8s.io=1.0
Annotations:  <none>
API Version:  kubeflow.org/v1alpha1
Kind:         StudyJob
Metadata:
  Creation Timestamp:  2019-01-18T16:30:46Z
  Finalizers:
    clean-studyjob-data
  Generation:        5
  Resource Version:  1777650
  Self Link:         /apis/kubeflow.org/v1alpha1/namespaces/kubeflow/studyjobs/random-example
  UID:               687a67f9-1b3e-11e9-a0c2-c6456c1f5f0a
Spec:
  Metricsnames:
    accuracy
  Objectivevaluename:  Validation-accuracy
  Optimizationgoal:    0.88
  Optimizationtype:    maximize
  Owner:               crd
  Parameterconfigs:
    Feasible:
      Max:          0.03
      Min:          0.01
    Name:           --lr
    Parametertype:  double
    Feasible:
      Max:          5
      Min:          2
    Name:           --num-layers
    Parametertype:  int
    Feasible:
      List:
        sgd
        adam
        ftrl
    Name:           --optimizer
    Parametertype:  categorical
  Requestcount:     4
  Study Name:       random-example
  Suggestion Spec:
    Request Number:        3
    Suggestion Algorithm:  random
    Suggestion Parameters:
      Name:   SuggestionCount
      Value:  0
  Worker Spec:
    Go Template:
      Raw Template:  apiVersion: batch/v1
kind: Job
metadata:
  name: {{.WorkerID}}
  namespace: kubeflow
spec:
  template:
    spec:
      containers:
      - name: {{.WorkerID}}
        image: katib/mxnet-mnist-example
        command:
        - "python"
        - "/mxnet/example/image-classification/train_mnist.py"
        - "--batch-size=64"
        {{- with .HyperParameters}}
        {{- range .}}
        - "{{.Name}}={{.Value}}"
        {{- end}}
        {{- end}}
      restartPolicy: Never
Status:
  Condition:                    Running
  Early Stopping Parameter Id:  
  Last Reconcile Time:          2019-01-18T16:30:46Z
  Start Time:                   2019-01-18T16:30:46Z
  Studyid:                      y456536bd1e0ad5e
  Suggestion Count:             1
  Suggestion Parameter Id:      i31c2adcab54f891
  Trials:
    Trialid:  ka897d189e024460
    Workeridlist:
      Completion Time:  <nil>
      Condition:        Running
      Kind:             Job
      Start Time:       2019-01-18T16:30:46Z
      Workerid:         ma76ebe2b23fec02
    Trialid:            v9ec0edbb16befd7
    Workeridlist:
      Completion Time:  <nil>
      Condition:        Running
      Kind:             Job
      Start Time:       2019-01-18T16:30:46Z
      Workerid:         yc5053df337dbeec
    Trialid:            be68860be22cfce3
    Workeridlist:
      Completion Time:  <nil>
      Condition:        Running
      Kind:             Job
      Start Time:       2019-01-18T16:30:46Z
      Workerid:         v095e6b93d87e9eb
Events:                 <none>

The demo should start a study and run three jobs with different parameters. When the spec.Status.Condition changes to Completed, the StudyJob is finished.

TensorFlow operator example

To run the TensorFlow operator example, you must install a volume.

If you are using GKE and default StorageClass, you must create this PVC:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: tfevent-volume
  namespace: kubeflow
  labels:
    type: local
    app: tfjob
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi

If you are not using GKE and you don’t have StorageClass for dynamic volume provisioning in your cluster, you must create a PVC and a PV:

kubectl create -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/tfevent-volume/tfevent-pvc.yaml

kubectl create -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/tfevent-volume/tfevent-pv.yaml

Now you can run the TensorFlow operator example:

kubectl create -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/tfjob-example.yaml

You can check the status of the study:

kubectl -n kubeflow describe studyjobs tfjob-example

PyTorch example

This is an example for the PyTorch operator:

kubectl create -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/pytorchjob-example.yaml

You can check the status of the study:

kubectl -n kubeflow describe studyjobs pytorchjob-example

Monitoring results

You can monitor your results in the Katib UI. To access the Katib UI, you must install Ambassador.

In your ksonnet application’s root directory, run the following commands:

ks generate ambassador ambassador
ks apply ${KF_ENV} -c ambassador

Then port-forward the Ambassador service:

  • For Kubernetes version 1.9 and later:

    kubectl port-forward svc/ambassador -n kubeflow 8080:80
    
  • For Kubernetes version 1.8 and earlier:

    kubectl get pods -n kubeflow  # Find one of the Ambassador pods
    kubectl port-forward [Ambassador pod] -n kubeflow 8080:80
    

Now you can access the Katib UI at this URL: http://localhost:8080/katib/.

Cleanup

Delete the installed components:

ks delete ${KF_ENV} -c katib
ks delete ${KF_ENV} -c pytorch-operator
ks delete ${KF_ENV} -c tf-job-operator

If you created a PV for Katib, delete it:

kubectl delete -f https://raw.githubusercontent.com/kubeflow/katib/master/manifests/pv/pv.yaml

If you created a PV and PVC for the TensorFlow operator, delete it:

kubectl delete -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/tfevent-volume/tfevent-pvc.yaml
kubectl delete -f https://raw.githubusercontent.com/kubeflow/katib/master/examples/tfevent-volume/tfevent-pv.yaml

If you deployed Ambassador, delete it:

ks delete ${KF_ENV} -c ambassador

Metrics collector

Katib has a metrics collector to take metrics from each worker. Katib collects metrics from stdout of each worker. Metrics should print in the following format: {metrics name}={value}. For example, when your objective value name is loss and the metrics are recall and precision, your training container should print like this:

epoch 1:
loss=0.3
recall=0.5
precision=0.4

epoch 2:
loss=0.2
recall=0.55
precision=0.5

Katib collects all logs of metrics.